GL5 Fast Multi-Assay Analyser

for Clinical and Research Applications

Pre-programmed with Alcohol, Cholesterol, Glucose, Lactate, plus a spare channel for use with other Analox Oxidase chemistries*

APPLICATION AREAS

- Clinical Research
- Alcohol Research
- Metabolic Studies
- **Biochemical Research**
- Sports Medicine Research

MAIN FEATURES

- Plasma, serum and other aqueous solutions or whole blood via Analox collection systems
- O Small sample sizes from 2.5 10 μl
- o Printed results in under 20 seconds
- No sample turbidity or opacity errors
- Simple YES/NO operation
- Fully sterilizable fluid pathways
 - Data output facility
 - Compact size
 - Fully portable version available

PRINCIPLE OF OPERATION

Lactate: In the presence of molecular oxygen, lactate is oxidised by the enzyme Lactate Oxidase (LOD) to pyruvate and hydrogen peroxide,

Under the conditions of the assay, the rate of oxygen consumption is directly proportional to the L-lactate concentration.

Glucose: In the presence of molecular oxygen, β-D-glucose is oxidised by the enzyme glucose oxidase (GOD) to gluconic acid and hydrogen peroxide,

$$\beta\text{-D-Glucose} + O_2 \xrightarrow{\qquad \qquad \qquad } \text{D-Gluconic acid} + H_2O_2$$

Under the conditions of the assay, the rate of oxygen consumption is directly proportional to glucose concentration.

ANALY	IICAL	PEKF	ORIVIA	INCE

		Accuracy	Linearity	Precision (Within Run)
Glucose	>	i) Method comparison vs Hexokinase: y(Analox) = 0.985x - 0.14 mmol/L, r = 0.999, n = 156 ii) Method comparison vs Beckman: y(Analox) = 1.005x - 0.07 mmol/L, r = 0.999, n = 123 iii) Method comparison vs YSI: y(Analox) = 1.008x - 0.01 mmol/L, r = 0.999, n = 97	30.0 mmol/L (540 mg/dl) for 10 µl samples; 50.0 mmol/L (900 mg/dl) for 5 µl samples	C.V. of 1.0 % @ 5 mmol/L (plasma) C.V. of 1.4 % @ 10 mmol/L (plasma) C.V. of 0.85 % @ 12 mmol/L (whole blood)
Alcohol	>	i) Method comparison for whole blood (neutralised PCA extract) vs GC: y (Analox) = 1.039x + 0.28 mmol/L, r = 0.991, n = 27 ii) Urine Recovery Data: y (Analox) = 0.981x + 0.19 mmol/L, r = 0.999, n = 17	43.0 mmol/L (ca. 200 mg/dl) for 5 μl samples; 86.0 mmol/L (ca. 400 mg/dl) for 2.5 μl samples	C.V. of 2.5 % @ 18.5 mmol/L (ca. 85 mg/dl) (whole blood)
Lactate	>	i) Method comparison for whole blood vs YSI 23L: y (Analox) = 0.98x + 0.055 mmol/L, r = 0.9991, n = 56 ii) Method comparison for lysed whole blood vs classical PCA extract spectrophotometric: y (Analox) = 0.99x - 0.05 mmol/L, r = 0.992, n = 24	10 mmol/L (ca. 90 mg/dl) for 7 μl samples; 14 mmol/L (ca. 126 mg/dl) for 5 μl samples	C.V. of 2 % @ 2.5 mmol/L
Cholesterol	>	Method comparison vs Manual Enzymatic: y (Analox) = 0.98x + 0.04 mmol/L, r = 0.988, n = 142	10.0 mmol/L (387 mg/dl)	C.V. of 1 % @ 5 mmol/L (194 mg/dl)

^{*} Other Analox oxidase chemistries suitable for use on the GL5 include: 3-Hydroxybutyrate, glycerol, triglycerides.

INSTRUMENT SPECIFICATIONS

Method	>	Enzymatic oxygen-rate	Statistical Programmes	>	Sequential, giving mean, S.D and C.V.
Sensor	>	Clark-type amperometric oxygen electrode	Interface	>	Serial data port, optional Windows software available
Sensitivity	>	0.1, or 0.01, selectable			optional willidows software available
Reaction Temperature	>	30°C	Power	>	100-250V AC, 50-60Hz, 12-15V DC, 60VA
Display	>	32 character backlit LCD	Dimensions	>	Width 23cm, (9 ins) x Depth 29cm, (111/4 ins)
Printer	>	16 column dot matrix, 1 line/sec	Weight	>	x Height 15cm, 6¼ ins 3.8 kg, 8 lb 6 oz Portable Model 5.9 kg, 13 lb

